Structural Insights into Activation of the Retinal L-type Ca2+ Channel (Cav1.4) by Ca2+-binding Protein 4 (CaBP4)*

Saebomi Park1, Congmin Li1, Françoise Haeseleer1, Krzysztof Palczewski1, and James B. Ames2,3

From the 1Department of Chemistry, University of California, Davis, California 95616, the 2Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, and the 3Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965

Background: Cav1.4 is regulated by CaBP4, which is required for continuous release of neurotransmitter in retinal photoreceptor cells.

Results: CaBP4 contains two separate EF-hand lobes that bind Ca2+ and form a collapsed structure around the IQ motif in Cav1.4.

Conclusion: CaBP4 is suggested to activate Cav1.4 by disrupting an interaction between IQ and ICDI.

Significance: CaBP4 mutations associated with congenital stationary night blindness impair its binding to IQ.

CaBP4 modulates Ca2+-dependent activity of L-type voltage-gated Ca2+ channels (Cav1.4) in retinal photoreceptor cells. Mg2+ binds to the first and third EF-hands (EF1 and EF3), and Ca2+ binds to EF1, EF3, and EF4 of CaBP4. Here we present NMR structures of CaBP4 in both Mg2+-bound and Ca2+-bound states and model the CaBP4 structural interaction with Cav1.4. CaBP4 contains an unstructured N-terminal region (residues 1–99) and four EF-hands in two separate lobes. The N-lobe consists of EF1 and EF2 in a closed conformation with either Mg2+ or Ca2+ bound at EF1. The C-lobe binds Ca2+ at EF3 and EF4 and exhibits a Ca2+-induced closed-to-open transition like that of calmodulin. Exposed residues in Ca2+-bound CaBP4 (Phe137, Glu168, Leu207, Phe214, Met251, Phe264, and Leu268) make contacts with the IQ motif in Cav1.4, and the Cav1.4 mutant Y1595E strongly impairs binding to CaBP4. We conclude that CaBP4 forms a collapsed structure around the IQ motif in Cav1.4 that we suggest may promote channel activation by disrupting an interaction between IQ and the inhibitor of Ca2+-dependent inactivation domain.

CaBP43 is a 35-kDa Ca2+-binding protein expressed in retinal photoreceptor cells, localized primarily at the synaptic bulb (1, 2). CaBP4 controls the continuous release of the glutamate neurotransmitter in dark state photoreceptor cells (3), by regulating L-type calcium channels (Cav1.4) (1, 4). The C-terminal regulatory region of Cav1.4 binds to CaBP4 (4), which enables channel activation at high cytosolic Ca2+ levels and hyperpolarized voltages (1). A distinctive characteristic of Cav1.4 is the lack of Ca2+-dependent inactivation (CDI), because calmodulin (CaM) does not bind to its C-terminal region (5). Instead, Cav1.4 contains a stretch of residues in the C-terminal tail called the inhibitor of Ca2+-dependent inactivation (ICDI) that prevents binding of CaM to the IQ motif. In addition, CaBP4 binding to Cav1.4 can prevent Ca2+-dependent inactivation even in the absence of ICDI (4, 6).

Ca2+-dependent regulation of Cav1.4 mediated by CaBP4 is genetically linked to congenital stationary night blindness (1). Particular mutations in both the CACNA1F gene that encodes the α\textsubscript{1} subunit of an L-type Ca2+ channel (Cav1.4\textalpha) (7–10) and the CABP4 gene (11, 12) were associated with this autosomal recessive retinopathy. These findings are further underscored by observations that mice lacking either CaBP4 or Cav1.4\textalpha display a CSNB2-like phenotype (1, 13, 14). The first two mutations identified in the CABP4 gene were c.800_801delAG and c.370C→T. The first c.800_801delAG mutation causes a frameshift, p.Glu267fs, which extends the protein by 91 novel amino acids and deletes its C terminus (11). In both humans and mice, mutations in CABP4 lead to defective signaling between rods and cones with bipolar cells, wherein cones appear to be more affected. Thus, the phenotype presents more as a cone-rod dystrophy with a color vision deficit than congenital stationary night blindness.

CaBP4 belongs to a family of neuronal Ca2+-binding proteins (CaBP1–5 (15)) and contains four EF-hands like those found in CaM and CaBP1 (16) (Fig. 1). By analogy to CaM (17), the four EF-hands are grouped into two domains connected by a central linker that is four residues longer in CaBP4 than in CaM. In contrast to CaM, CaBP4 contains ~100 non-conserved amino acids upstream of the EF-hands in the N-terminal region. Another distinguishing property of CaBP4 is that the second EF-hand lacks critical residues required for high affinity Ca2+ binding (15, 18).

Despite extensive studies on CaBP4 (1, 4, 6, 19), little is known about its structure and interaction with Ca2+ channel targets. Here, we present NMR solution structures of both Mg2+-bound and Ca2+-bound conformational states of CaBP4.
and characterize the CaBP4 structural interaction with Cav1.4. CaBP4 NMR structures reveal important residues essential for its Ca\(^{2+}\)-dependent binding to Cav1.4. ITC and NMR analyses demonstrate that Ca\(^{2+}\)-saturated CaBP4 (but not the Ca\(^{2+}\)-free/Mg\(^{2+}\)-bound state) binds to the IQ motif in Cav1.4 (residues 1579–1605). All four EF-hands in CaBP4 contact the helical IQ motif and form a collapsed structure in the complex. Exposed residues in CaBP4 (Phe\(^{137}\), Glu\(^{168}\), Leu\(^{207}\), Ile\(^{209}\), Met\(^{251}\), Phe\(^{264}\), and Leu\(^{268}\)) make specific contacts with conserved residues in the IQ motif (Phe\(^{1586}\), Ile\(^{1592}\), Tyr\(^{1595}\), and Arg\(^{1597}\)) that are essential for binding. We propose that CaBP4 activates Cav1.4 by binding to the IQ motif, which we suggest may disrupt an interaction between the IQ and ICDI domains.

EXPERIMENTAL PROCEDURES

Expression and Purification of CaBP4—Full-length mouse CaBP4 (residues 1–271) could not be concentrated beyond 1 mg/ml and therefore was not soluble enough for high resolution structural analysis by NMR. The first 99 residues from the N-terminus of CaBP4 were shown to be unstructured, because this region was extensively cleaved in limited proteolysis studies (4). Removal of the first 99 residues of CaBP4 markedly improved protein solubility and did not affect target or Ca\(^{2+}\) binding. Thus, NMR experiments in this study were performed with the N-terminal deletion construct of CaBP4 (residues 100–271, called CaBP4(100–271)). Recombinant murine CaBP4(100–271) and mutants were subcloned into the pET28a vector, expressed in Rosetta2(DE3) cells, and purified by the same method used for CaBP4(100–271) as described previously (20, 21).

CaBP4 N-lobe and C-lobe Fragments—cDNAs coding the CaBP4 N-terminal region (residues 1–100; called CaBP4(1–100)), CaBP4 N-lobe (residues 100–200; N-lobe), and CaBP4 C-lobe (residues 198–271; C-lobe) were cloned into protein expression vector pET28a. The recombinant proteins His\(_{16}\)-CaBP4(1–100), His\(_{15}\)-N-lobe, and His\(_{15}\)-C-lobe were expressed and purified by the same method used for CaBP4(100–271) (21).

Construction of CaBP4 Mutants—The M251A, F264E, and L268A mutants of CaBP4(100–271) were generated by using the QuikChange site-directed mutagenesis kit (Stratagene), and the mutations were confirmed by DNA sequencing. Mutant expression and purification procedures were the same as those used for wild type CaBP4.

Pull-down Assays with Cav1.4(1440–1982)—The mouse recombinant C-terminal regulatory region of Cav1.4 (residues 1440–1982, called Cav1.4(1440–1982)) and the Y1595E mutant containing a GST tag were cloned, expressed, and purified as noted before (22). GST pull-down assays were used to monitor binding of CaBP4 to Cav1.4(1440–1982)-GST as described previously (23). Protein samples of CaBP4 and Cav1.4(1440–1982)-GST were dissolved in Buffer A (0.1% Triton X-100, 150 mM NaCl, 10 mM CaCl\(_2\), 10 mM Tris-HCl, pH 7.4, and protease inhibitors), concentrated to 0.5 ml (10 \(\mu\)l each), mixed with 0.5 ml of GST-Sepharose beads for 10 min, and then centrifuged for 5 min at 500 \(\times\) g. Bead pellets were washed twice with Buffer A for 5 min at 4°C. The samples were separated by SDS-PAGE, transferred for 10 h onto polyvinylidene fluoride (PVDF) membranes and probed with CaBP4 antibody.

NMR Spectroscopy—Samples for NMR analyses were prepared by dissolving unlabeled, \(^{15}\)N-labeled, \(^{15}\)N,\(^{13}\)C-labeled, or \(^2\)H,\(^{13}\)C,\(^{15}\)N-labeled CaBP4 proteins (CaBP4(100–271, N-lobe, and C-lobe) in 0.3 ml of 90% H\(_2\)O, 10% [\(^2\)H\(_2\)]H\(_2\)O containing 10 mM \([\(^3\)H]\)Tris, pH 7.4, 0.1 M KCl, and either 5 mM EDTA (apo), 5 mM MgCl\(_2\) (Mg\(^{2+}\)-bound), or 5 mM CaCl\(_2\) (Ca\(^{2+}\)-bound). All NMR experiments were performed at 37°C on a Bruker Avance 800-MHz spectrometer equipped with a triple resonance cryoprobe and z axis gradient. Backbone and side chain NMR assignments for Ca\(^{2+}\)-bound CaBP4(100–271) and Mg\(^{2+}\)-bound N-lobe and C-lobe were determined as described previously (20, 21). All triple-resonance NMR experiments done for making resonance assignments were performed, processed, and analyzed as described (24) on a sample of \(^1\)H,\(^{15}\)N-labeled Ca\(^{2+}\)-bound CaBP4(100–271) or Mg\(^{2+}\)-bound N-lobe and C-lobe with the following number of complex points and acquisition times: HNCO (\(^{1}\)H,\(^{15}\)N) (F2) 32, 23.7 ms; \(^{13}\)CO (F2) 64, 42.7 ms; \(^{1}\)H (F3) 512, 64 ms; HNCA (\(^{15}\)N, \(^{1}\)H) (F2) 32, 23.7 ms; \(^{13}\)C (F2) 48, 6.3 ms; \(^{1}\)H (F3) 512, 64 ms; CBCA(CO)NH (\(^{15}\)N, \(^{13}\)C, \(^{1}\)H) (F2) 32, 23.7 ms; \(^{13}\)CCO (F2) 48, 6.3 ms; \(^{1}\)H (F3) 512, 64 ms; and HBCONH (\(^{15}\)N, \(^{13}\)C, \(^{1}\)H) (F2) 32, 23.7 ms, \(^{1}\)H (F2) 64 21 ms.
Structure of CaBP4 and Interaction with Cav1.4

TABLE 1

<table>
<thead>
<tr>
<th>NMR structural statistics for Ca(^{2+})-bound CaBP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(^{2+})-bound N-lobe</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Total NOE restraints</td>
</tr>
<tr>
<td>Intra</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Long</td>
</tr>
<tr>
<td>Hydrogen bond restraints</td>
</tr>
<tr>
<td>Dihedral angle restraints</td>
</tr>
<tr>
<td>RMSD from ideal geometry</td>
</tr>
<tr>
<td>Bond length (Å)</td>
</tr>
<tr>
<td>Bond angle (degrees)</td>
</tr>
<tr>
<td>Backbone (Å)</td>
</tr>
<tr>
<td>Heavy atoms (degrees)</td>
</tr>
</tbody>
</table>

Ramachandran analysis (%)

<table>
<thead>
<tr>
<th></th>
<th>Most favored regions</th>
<th>Allowed regions</th>
<th>Disallowed regions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82.0</td>
<td>74.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>25.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

RESULTS

The N-terminal Region of CaBP4 Is Unstructured—Full-length CaBP4 (residues 1–271) tended to aggregate at protein concentrations needed for NMR (10 mg/ml) and was not soluble enough for structural analysis. The CaBP4 N-terminal region (residues 1–100) contains residues predicted to be unstructured (37). Indeed, the first 99 residues from the N terminus of CaBP4 were extensively cleaved in limited proteolysis studies (4), and an isolated 100-residue peptide fragment from CaBP4 (residues 1–100) is unstructured in solution based on having random coil NMR chemical shifts. Because the first 100 residues from the N terminus are unstructured, an N-terminal deletion construct was generated (residues 100–271 called CaBP4(100–271)) that is more soluble than full-length CaBP4 and adopts a well folded protein conformation in solution (21).

The calorimetry and NMR structural studies described below were performed using CaBP4(100–271).

Ca\(^{2+}\) and Mg\(^{2+}\) Bind to CaBP4—Isothermal titration calorimetry (ITC) was used to analyze the energetics of Ca\(^{2+}\) and Mg\(^{2+}\) binding to CaBP4(100–271). Titration of Mg\(^{2+}\) into apo-CaBP4(100–271) produced an exothermic isotherm (Fig. 2A). Mg\(^{2+}\) is bound to CaBP4(100–271) with an apparent dissociation constant (K\(_d\)) of 83 µM, an enthalpy difference (ΔH) of −1.64 kcal/mol, and an n value of 2 (Table 2). The stoichiometry of Mg\(^{2+}\) binding was determined by analyzing \(^{1}H\)-\(^{15}N\) HSQC NMR spectra of Mg\(^{2+}\)-bound CaBP4(100–271). NMR not only determines the number of ions bound per protein but can also determine which particular EF-hands are bound (32). Two downfield NMR peaks (diagnostic of Mg\(^{2+}\) binding (32)) indicate that two Mg\(^{2+}\) bind per protein. The two downfield peaks were assigned to Gly-143 (EF1) and Gly-220 (EF3), indicating that Mg\(^{2+}\) binds to CaBP4 at EF1 and EF3 (Fig. 2A, inset).
CaBP4 exists in the Ca\(^{2+}\)-bound state in the dark (high Ca\(^{2+}\)) and switches to the Mg\(^{2+}\)-bound state upon light activation when cytosolic Ca\(^{2+}\) levels decrease below 50 nM (38).

CaBP4 Has Two IndependentDomains—CaM (39) and CaBP1 (32) both have four EF-hands divided into two structurally independent domains (an N-lobe and C-lobe) connected by a flexible linker. To test whether the EF-hands in CaBP4 form two independent domains, \(^{1}\text{H}-^{15}\text{N}\) HSQC NMR spectra of an isolated lobe that contains EF1 and EF2 (N-lobe, residues 100–200) and a separate lobe that contains EF3 and EF4 (C-lobe, residues 198–271) were compared with spectra of full-length CaBP4 (Fig. 3, A and B). The backbone amide chemical shifts in the lobe fragments indicate that the individual lobes are stably folded. Also, the assigned chemical shifts in each lobe fragment were nearly identical to the corresponding chemical shifts of the full-length protein. Thus, the two isolated lobes are structurally independent, consistent with two non-interacting domains.

Heteronuclear (\(^{1}\text{H}-^{15}\text{N}\)) NOE analysis of CaBP4 reveals considerable backbone flexibility in the central linker that connects the two lobes (Fig. 3C). Relatively low heteronuclear NOE values (<0.6) were observed for residues 192–200 in the central linker region, indicating that CaBP4 does indeed contain a flexible interdomain linker. Heteronuclear NOE values (~0.8) are much higher for residues within each lobe and indicate that the two lobes are separately folded as shown previously for CaBP1 (32).

Structure of Ca\(^{2+}\)-bound CaBP4—The sequence-specific NMR assignments of CaBP4(100–271) were reported previously (21), and the secondary structure based on these assignments is summarized in Fig. 1. In the current study, we report the NMR structure of CaBP4(100–271) (Fig. 4). NMR-derived structures were calculated separately for the N-lobe (Protein...
Data Bank code 2M29) and C-lobe (Protein Data Bank code 2M28) using NOE-based distances and dihedral angle restraints that served as input for restrained molecular dynamics structure calculations (see “Experimental Procedures”). Statistics for the structure calculation are summarized in Table 1 for the 15 lowest energy conformers. The NMR-derived structures of CaBP4(100–271) were validated with PROCHECK: 82% of N-domain residues and 74.2% of C-domain residues belonged to the most favorable region on the Ramachandran plot.

The NMR-derived structure of Ca2⁺-saturated CaBP4(100–271) (Fig. 4) contains a total of eight β-helices and four β-strands: α1 (residues 125–137), α2 (residues 147–156), α3 (residues 163–174), α4 (residues 183–190), α5 (residues 204–219), and α6 (residues 225–237). EF-hands are highlighted in color as defined in Fig. 1. Orange spheres represent bound Ca²⁺. Hydrophobic side chain atoms of Leu¹³⁰, Leu¹³⁵, and Phe¹⁸⁶ buried inside the closed N-lobe are highlighted in yellow.
CaBP4(100–271) contains Ca\(^{2+}\) bound at EF1, EF3, and EF4 (orange spheres in Fig. 4) as evidenced by characteristic Ca\(^{2+}\)-dependent amide chemical shift changes assigned to Gly-143 in EF1, Gly-220 in EF3, and Gly-257 in EF4 (Fig. 2B, inset). The geometry of the coordinate covalent bonds formed between chelating amino acid residues in CaBP4 and the bound Ca\(^{2+}\) could not be observed directly in our NMR study. Instead, the stereochemical geometry and chelation of Ca\(^{2+}\) bound at EF3 and EF4 was modeled with structural constraints derived from the x-ray crystal structure of Ca\(^{2+}\)-bound CaM (17), which closely resembles the binding site geometry conserved in other EF-hand proteins (40). Structure calculations performed without the metal binding restraints produced an overall similar fold, and the metal binding restraints decrease the main chain RMSD by 25%.

The N-lobe of CaBP4 with one Ca\(^{2+}\) bound at EF1 (EF2 unoccupied) adopts a “closed” conformation (41); the interhelical angles of EF1 and EF2 are 134.7 and 141.1°, respectively. That EF1 and EF2 both remain in a closed conformation even when Ca\(^{2+}\) is bound at EF1 suggests that the binding energy of one Ca\(^{2+}\) at EF1 (EF2 unoccupied) does not suffice to drive a closed-to-open transition. This implies that the binding energy of two Ca\(^{2+}\) are needed to drive formation of the open state and could explain why two EF-hands are paired together to form a lobe (Fig. 4A). The Ca\(^{2+}\)-bound closed conformation for the N-lobe in CaBP4 is similar to that of CaBP1 (42) with an RMSD of 0.9 Å.

The Ca\(^{2+}\)-bound C-lobe of CaBP4 (two Ca\(^{2+}\) bound) forms the familiar “open” conformation seen for other Ca\(^{2+}\)-bound EF-hand proteins (16). For Ca\(^{2+}\)-bound CaBP4, the interhelical angles of EF3 and EF4 are 104.1 and 88.3° and quite different from the interhelical angles of EF1 and EF2 in the closed conformation (Fig. 4B and Table 3).

Exposed Hydrophobic Patch in CaBP4—A surface representation of Ca\(^{2+}\)-bound CaBP4 is illustrated in Fig. 5. The N-lobe surface contains many negatively charged residues (Glu\(^{121}\), Glu\(^{125}\), Glu\(^{129}\), Glu\(^{136}\), and Glu\(^{168}\), highlighted in red in Fig. 5A). Only a few hydrophobic residues (Leu\(^{122}\), Leu\(^{150}\), and Met\(^{160}\)) and basic residues (Arg\(^{120}\), Arg\(^{155}\), and Arg\(^{174}\)) are exposed on the N-lobe surface. By contrast, the C-lobe of Ca\(^{2+}\)-bound CaBP4 has an extensive array of solvent-exposed hydrophobic residues (Leu\(^{207}\), Phe\(^{214}\), Ile\(^{222}\), Leu\(^{235}\), Leu\(^{239}\), Met\(^{251}\), Phe\(^{264}\), and Leu\(^{268}\), highlighted in yellow in Fig. 5B). This exposed hydrophobic patch on the C-lobe makes important contacts with the Cav1.4 IQ motif (see below). The hydrophobic patch is surrounded peripherally by charged residues.

Structure of Mg\(^{2+}\)-bound CaBP4—In light-activated photoreceptor cells, CaBP4 exists in a Mg\(^{2+}\)-bound state, because light activation decreases the cytosolic Ca\(^{2+}\) level below 50 nM.
(38), whereas the physiological Mg$^{2+}$ concentration remains steady at ~1 mM (43). Mg$^{2+}$-bound CaBP4(100–271) was not soluble enough for NMR structural analysis. Instead, NMR experiments were performed on separate constructs of the N-lobe (residues 100–200) and C-lobe (residues 198–271). 1H-15N HSQC spectra of Mg$^{2+}$-bound N-lobe and C-lobe fragments are shown in Fig. 6, A and B. These spectra contain downfield shifted peaks assigned to Gly-143 (EF1) and Gly-220 (EF3), indicating that Mg$^{2+}$ is bound at EF1 and EF3, whereas EF2 and EF4 are unoccupied at saturating Mg$^{2+}$ levels. Mg$^{2+}$ binding at EF1 and EF3 was modeled based on the Mg$^{2+}$-bound structure of CaBP1 (32). Residues at the 1-, 3-, and 5-positions of the EF-hand loop (in EF1 and EF3) were selected to chelate the bound Mg$^{2+}$ (30, 44). Separate protein structures of the Mg$^{2+}$-bound CaBP4 N-lobe and C-lobe were generated by CS-ROSETTA with HN, Ca, Cβ, and CO chemical shift values used as structural restraints (45). The five lowest energy structures were selected from 1000 trial structures and refined against the residual D$_{NH}$ restraints as described (31). Initial residual dipolar coupling magnitude and rhombicity were calculated by fitting the measured residual dipolar couplings to the calculated structure using the PALES program (46). The residual dipolar coupling-refined structures of Mg$^{2+}$-bound N-lobe and C-lobe are presented in Fig. 6, C and D. The N-lobe structure has a quality Q-factor of 0.28 and an R-factor of 0.95, and the C-lobe structures have a Q-factor of 0.17 and an R-factor of 0.93. Both structures adopt a “closed” conformation in which the helices are nearly antiparallel with interhelical angles defined in Table 3. The overall secondary structure and topology of Mg$^{2+}$-bound CaBP1 are very similar to those described above for Ca$^{2+}$-bound CaBP4.

Ca$^{2+}$-induced Conformational Changes—Ca$^{2+}$-induced conformational changes in CaBP4 are illustrated by superimposing its Mg$^{2+}$-bound and Ca$^{2+}$-bound structures (Fig. 6E). For the CaBP4 N-lobe, the Ca$^{2+}$-bound closed conformation is similar to that of the Mg$^{2+}$-bound conformation (RMSD = 1.1 Å), indicating that Ca$^{2+}$ binding to the N-lobe does not induce a significant conformational change. However, Ca$^{2+}$ binding to the C-lobe at EF3 and EF4 caused large changes in the interhelical angles for both EF3 and EF4 (Table 3). This Ca$^{2+}$-induced

![FIGURE 6. NMR-based structures of Ca$^{2+}$-free/Mg$^{2+}$-bound CaBP4. Shown are 1H-15N HSQC NMR spectra of Mg$^{2+}$-bound N-lobe (residues 100–200) (A) and Mg$^{2+}$-bound C-lobe (residues 198–271) (B). Resonance assignments are indicated by the residue labels. Downfield peaks at ~10.5 ppm are assigned to Gly-143 (N-lobe) and Gly-220 (C-lobe) and indicate that Mg$^{2+}$ is bound at EF1 and EF3. Main chain structures of Ca$^{2+}$-free/Mg$^{2+}$-bound CaBP4 N-lobe (C) and C-lobe (D) were calculated using NMR residual dipolar couplings (31) and CS-ROSETTA (45). Bound Mg$^{2+}$ ions at EF1 and EF3 are not shown. EF-hands are highlighted in color as defined in Fig. 1. E, structures of Ca$^{2+}$-free/Mg$^{2+}$-bound CaBP4 N-lobe (left) and C-lobe (right) highlighted in grey are overlaid onto structures of the Ca$^{2+}$-bound N-lobe (left) and C-lobe (right) shown in color. The N-lobe structure is not affected by Ca$^{2+}$, whereas the C-lobe exhibits a Ca$^{2+}$-induced decrease in interhelical angles for EF3 and EF4 (Table 3).]
Structural Model of CaBP4 Bound to the IQ Motif—The relatively low solubility of the CaBP4-IQ complex has thus far hampered all efforts to directly solve the complex structure by NMR or x-ray crystallography. Instead, an experimentally guided computational approach was used to dock the NMR structures of Ca$^{2+}$-bound CaBP4 (Fig. 4) onto a modeled helical structure of the Cav1.4 IQ motif, derived from the helical Cav1.2 IQ motif seen in previous crystal structures (49, 50). The helical structure of the IQ peptide bound to CaBP4 was confirmed by circular dichroism (Fig. 7C). The docking calculation performed with HADDOCK (34–36) was experimentally constrained with chemical shift perturbation data obtained by comparing NMR spectra of CaBP4 alone and in the presence of IQ peptide (Fig. 7A). The NMR resonances of CaBP4 that decrease in interhelical angles for both EF3 and EF4 are consistent with the familiar closed-to-open transition seen previously in CaM and other Ca$^{2+}$ sensor proteins (16).
Structure of CaBP4 and Interaction with Cav1.4

![Diagram showing the structure of CaBP4 and its interaction with Cav1.4](image)

Both lobes of Ca\(^{2+}\)-bound CaBP4 formed separate contacts with Cav1.4 on opposite sides of the IQ helix (C-lobe (cyan) and N-lobe (light gray)) (Fig. 8A). Exposed hydrophobic residues in the CaBP4 C-lobe (Leu\(^{207}\), Phe\(^{214}\), Leu\(^{235}\), Gly\(^{236}\), Met\(^{251}\), Glu\(^{263}\), Phe\(^{264}\), and Leu\(^{268}\)) interacted primarily with Ile\(^{1592}\) and Tyr\(^{1593}\) on the same face of the IQ helix. This is consistent with the I1592A/Y1595A mutation in Cav1.4 that significantly weakened CaBP4 binding (4). The docking calculation was performed using HADDOCK as described under "Experimental Procedures." A representative docked structure of CaBP4 bound to the IQ motif is shown in Fig. 8A.

晒 showed largest changes in chemical shift were assigned to exposed residues (Glu\(^{121}\), Leu\(^{122}\), Glu\(^{123}\), Phe\(^{137}\), Met\(^{154}\), Phe\(^{186}\), Thr\(^{198}\), Ala\(^{199}\), Leu\(^{207}\), Phe\(^{214}\), Leu\(^{235}\), Gly\(^{236}\), Met\(^{251}\), Glu\(^{263}\), Phe\(^{264}\), and Leu\(^{268}\)). Residues that affected this binding (see "Experimental Procedures") were selected as "active restraints" within HADDOCK to calculate an ensemble of docked structures (interface RMSD is 1.7 Å). A representative docked structure of CaBP4 bound to the IQ motif is shown in Fig. 8A.

DISCUSSION

In this study, we determined the NMR solution structures of CaBP4 in both Mg\(^{2+}\)-bound and Ca\(^{2+}\)-bound conformational states and characterized the CaBP4 structural interaction with Cav1.4. The overall main chain structures of Mg\(^{2+}\)-bound and Ca\(^{2+}\)-bound CaBP4 (Figs. 4 and 6) are similar to those seen previously for CaBP1 (32). In the presence of physiological Mg\(^{2+}\) levels (and in the absence of Ca\(^{2+}\)), CaBP4 has Mg\(^{2+}\)-bound at EF1 and EF3 (Fig. 2A, inset). At saturating Ca\(^{2+}\) levels, the N-lobe of CaBP4 adopts a closed conformation with Ca\(^{2+}\)-bound at EF1 (and no metal bound at EF2), in contrast to the Ca\(^{2+}\)-bound open conformation seen in Cav1.4 (17) and TnC (51). The CaBP4 C-lobe forms hydrophobic patches that can more readily recognize the IQ helix (5). Many of the exposed hydrophobic residues in CaBP4 (Leu\(^{207}\), Phe\(^{214}\), Met\(^{251}\), Phe\(^{264}\), and Leu\(^{268}\)) make contact with the IQ motif (Fig. 8A). The corresponding residues in CaM form similar contacts with IQ, and this may explain why CaBP4 and CaM compete for binding to IQ motifs in voltage-gated Ca\(^{2+}\) channels (52).

The Ca\(^{2+}\)-bound closed conformation for the CaBP4 N-lobe with Ca\(^{2+}\)-bound at EF1 (EF2 unoccupied; Fig. 4A) could prevent unwanted binding of low affinity molecules and play a role in enhancing target specificity in photoreceptors. The closed conformation of the Ca\(^{2+}\)-bound CaBP4 N-lobe conceals hydrophobic residues (Leu\(^{130}\), Leu\(^{150}\), and Phe\(^{186}\)) in Fig. 4A) that would otherwise be exposed in an open conformation. When CaBP4 binds to Cav1.4, we suggest that the target binding free energy may drive the closed Ca\(^{2+}\)-bound N-lobe into a semi-open conformation that can more readily recognize the IQ helix (53). Indeed, the modeled structure of CaBP4 bound to IQ peptide shows that the N-lobe (with Ca\(^{2+}\)-bound at EF1) adopts a more opened conformation that exposes Phe\(^{137}\) and Phe\(^{186}\) to...
interact with Cav1.4 residue Phe1586 (Fig. 8A). This target-induced opening of the N-lobe (which lacks Ca\(^{2+}\)-binding at EF2) suggests that the target binding free energy can compensate for the lack of Ca\(^{2+}\) binding at EF2. Thus, disabling Ca\(^{2+}\) binding at EF2 in CaBP4 helps to ensure that the N-lobe remains closed in the absence of Cav1.4 to prevent binding of lower affinity molecules. A similar enhancement of target specificity is also seen for CaBP1 (42) and cardiac TnC (54), both of which have only one Ca\(^{2+}\) bound to the N-lobe. The Cav1.4 IQ motif (residues 1579–1605) binds tightly to Ca\(^{2+}\)-bound CaBP4 but not to Ca\(^{2+}\)-free/Mg\(^{2+}\)-bound CaBP4. Ca\(^{2+}\)-dependent CaBP4 binding to IQ differs from the Ca\(^{2+}\)-independent binding of IQ motifs to CaM (47, 48) and other EF-hand proteins (55). The Cav1.4 IQ peptide binds to full-length CaBP4 with at least 10-fold higher affinity than IQ binding to the individual lobes. This positive cooperativity between the two lobes in CaBP4 is consistent with the collapsed structure of the two lobes that surround the IQ helix (Fig. 8). Similar cooperative lobe interactions are also seen in the crystal structures of Ca\(^{2+}\)-bound CaM bound to the Cav1.2 IQ (49, 50) and other protein targets (56).

CaBP4 makes primarily hydrophobic contacts with the IQ motif (Phe\(^{1586}\), Tyr\(^{1587}\), Ile\(^{1592}\), and Tyr\(^{1595}\)). CaBP4 interacts most extensively with the Cav1.4 residue Tyr\(^{1595}\), which we show is essential for binding (Fig. 7, A and D). CaBP4 residues (Leu\(^{207}\), Met\(^{251}\), and Leu\(^{268}\)) that contact Tyr\(^{1595}\) (Fig. 8A) are not conserved in CaM. These non-conserved hydrophobic contacts in the CaBP4–Cav1.4 complex could help explain why L-type channels bind more tightly to CaBP4 than to CaM (6).

Modulation of Cav1.4 by CaBP4 has been shown to be physiologically relevant by studies on knock-out mice and patients with retinal disease (1, 14). CaBP4 knock-out mice show defects in photoreceptor synaptic function and organization similar to those in mice that lack Cav1.4. In addition, homozygous mutations in both CaBP4 and Cav1.4 are associated with congenital stationary night blindness 2 (11, 57). In patients with pArg216X mutations, most of the CaBP4 C-lobe is absent, and this mutant form of CaBP4 cannot activate Cav1.4 (57). This is consistent with our finding that the CaBP4 N-lobe alone does not bind to the IQ motif (Fig. 7A). Patients with the c.800_801delAG deletion (lacking CaBP4 residues Glu\(^{263}\)–Gly\(^{271}\)) show an impaired modulation of Cav1.4 by CaBP4, leading to deficient neurotransmitter release from photoreceptors (11). This effect of deleting the C-terminal residues (Glu\(^{263}\)–Gly\(^{271}\)) is consistent with our structural model that indicates that Phe\(^{264}\) and Leu\(^{268}\) are important for contacting the IQ motif (Fig. 8A).

Based on our structure of the CaBP4-IQ complex (Fig. 8), we propose a schematic mechanism for Ca\(^{2+}\)-dependent regulation of Cav1.4 channel activity in photoreceptor cells (Fig. 9). In dark-adapted rods, the cytosolic Ca\(^{2+}\) concentration is maintained at high levels (38), which allows Ca\(^{2+}\)-bound CaBP4 to bind the IQ motif in Cav1.4. We suggest that CaBP4 binding to IQ could prevent IQ association with ICDI. The Cav1.4 IQ motif was suggested to interact with ICDI and promote channel closure, because deletion of the ICDI causes channel opening (4). The ICDI was also suggested to interact with the EF-hand region (residues 1445–1493, highlighted in green in Fig. 9A) (5). We suggest that Ca\(^{2+}\)-induced CaBP4 binding to IQ could disrupt the ICDI domain from interacting with both the IQ and EF-hand region and thus destabilize the Cav1.4 closed state at high Ca\(^{2+}\) levels. Therefore, Ca\(^{2+}\)-induced binding of CaBP4 to IQ is proposed to stabilize the Cav1.4 open state at high Ca\(^{2+}\) levels so that the channels remain open in dark-adapted photoreceptors. Light activation of these photoreceptors produces a drop in cytosolic Ca\(^{2+}\) (38) that in turn causes the Ca\(^{2+}\)-free CaBP4 to dissociate from Cav1.4. We propose that light-induced dissociation of Ca\(^{2+}\)-free CaBP4 would allow the IQ motif to interact with ICDI and promote channel closure upon light activation.

REFERENCES
to receptor synaptic terminals. *Front. Mol. Neurosci.* 5, 26

44. Finley, N. L., Howarth, J. W., and Rosevear, P. R. (2004) Structure of the Mg$^{2+}$-loaded C-lobe of cardiac troponin C bound to the N-domain of cardiac troponin I: comparison with the Ca$^{2+}$-loaded structure. Biochemistry 43, 11371–11379
51. Herzberg, O., and James, M. N. (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0Å resolution. J. Mol. Biol. 203, 761–779